
# **CACHET**

# **ChicAgo Center for Health and EnvironmenT**







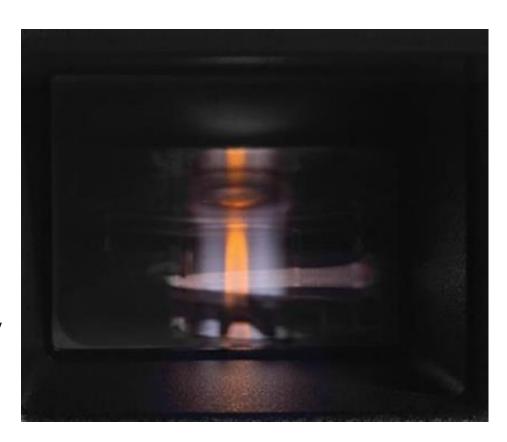
# **UIC ICP MS introduction**

- > ICP MS Principle
- Unique Features of Nexlon 2000s
- Assays Currently Available on 2000s
- Assays in Development on 2000s



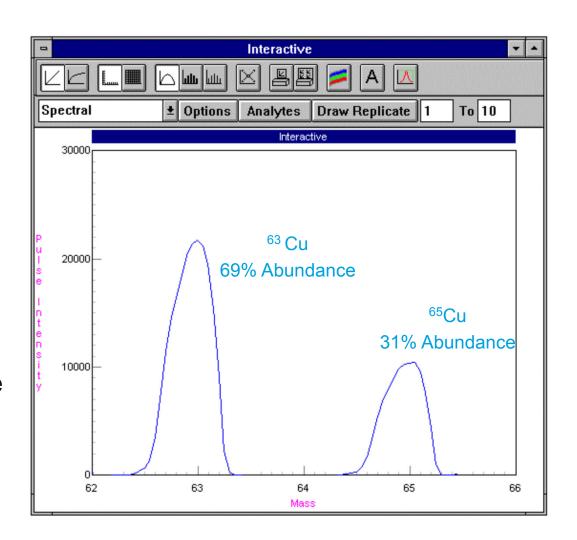
#### What is ICP-MS?

- Technique for trace elemental analysis
  - Commercially available since 1983
- Detection limits in the ppq-ppb range for most elements
- Ability to determine isotope ratios
- Ability to determine elements in single particles
- Ability to determine elements in single cells




NexION 2000s ICP-MS




### **How Does ICP-MS Work?**

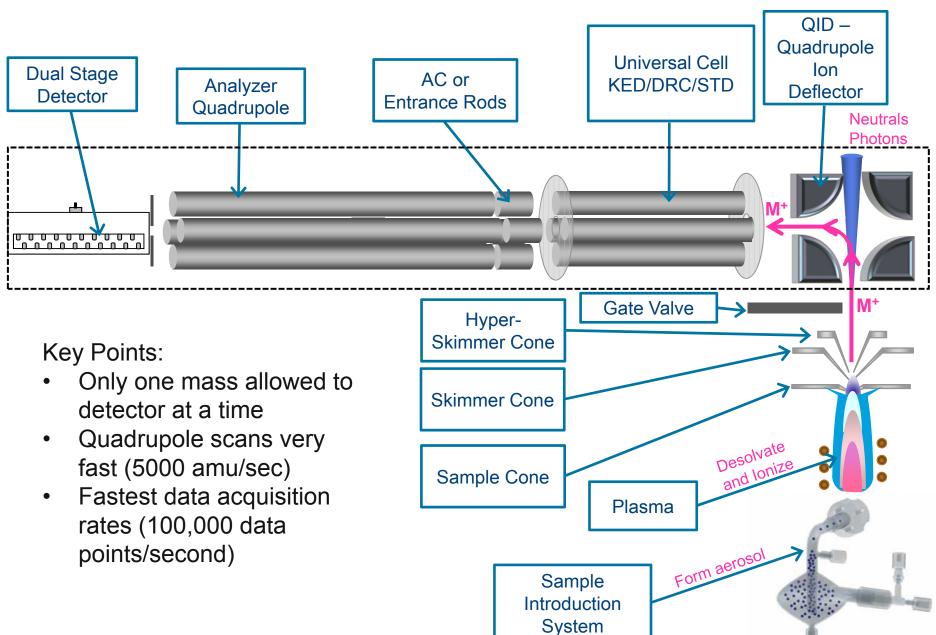
- Elements in sample are volatilized and ionized by argon ICP (Inductively Coupled Plasma)
- lons are focused into a quadrupole mass spectrometer
- lons for each element are "counted" by the detector
- Instrument is calibrated daily by analysis of solutions of known elemental concentration



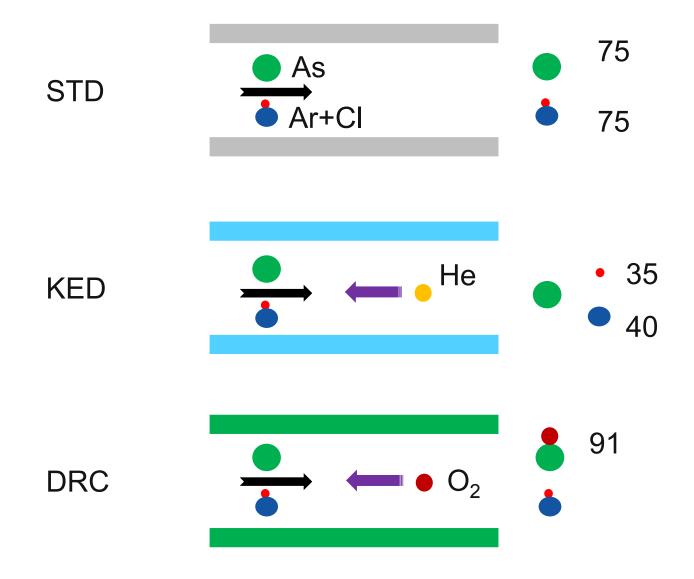
# **Isotopes and Mass Spectra**

- Isotopes of an element differ in the number of neutrons in the nucleus
- Cu Atomic Number 29
  - 63Cu has 34 neutrons
  - 65Cu has 36 neutrons
- The mass spectrum of Cu consists of two peaks of the above isotopes and their relative intensities will be a function of the isotopic abundance





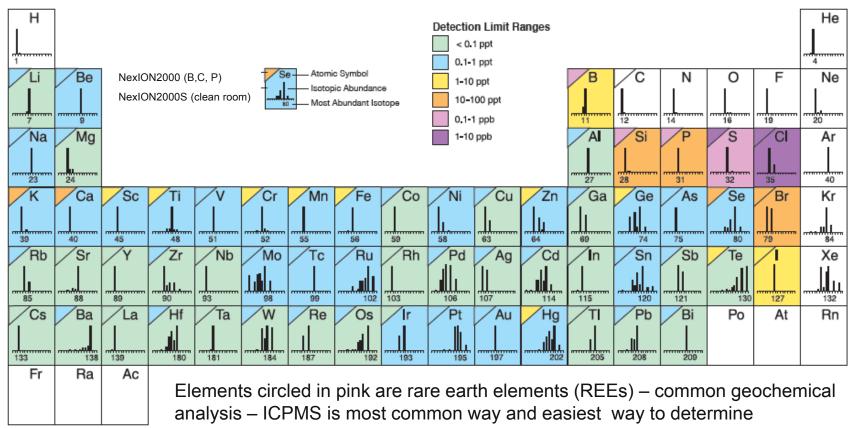

### **Feature of Nexlon 2000s**

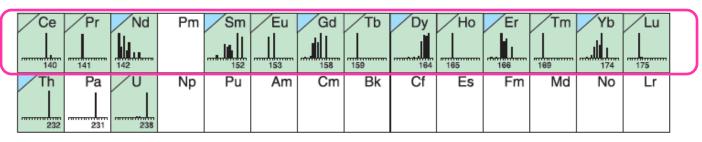

- A dedicated SMARTintro<sup>™</sup> High Purity sample-introduction module minimizes contamination and delivers low background equivalent concentrations (BECs))
- Built-in cold plasma capabilities which, combined with Reaction mode, deliver PPQ detection limits
- Three quadrupoles, three gas channels, and three modes of operation combine to offer better interference removal, delivering better detection limits/improved data accuracy
- The industry's fastest data acquisition speed on the market (100,000 points/sec) to handle any particle size
- A new solid-state RF generator with revolutionary LumiCoil™ technology first ICP-MS RF coil that requires no maintenance or cooling
- Triple Cone Interface with Quadrupole Ion Deflector, delivering no maintenance beyond the cones
- Small footprint to minimize bench space
- Syngistix<sup>™</sup> software provides an intuitive interface that mirrors your workflow, with left-to-right, icon-based navigation that guides you through your analysis. Plus, it's a cross-platform solution, easing the transition from technique to technique
- Built-in Radian™ Remote Monitoring Service provides real-time monitoring of your NexION system's diagnostic parameters, enhancing laboratory productivity



### **How Does It Work - Ion Path of the NexION 2000**

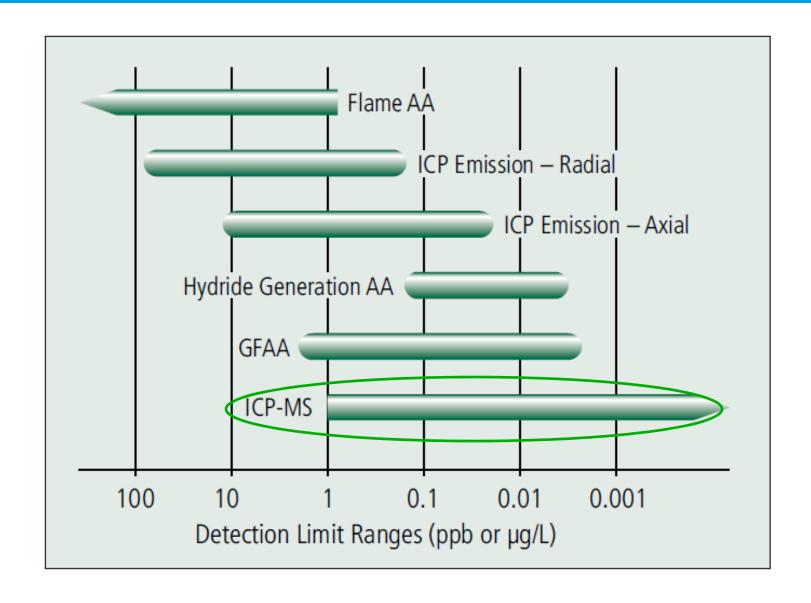



# **Universal Cell**




**CACHET** 

# What Elements Can Be Determined by ICP-MS?


If the box is shaded it can be determined!







# **Comparison of Detection Limit Ranges**



# **Analytical Working Range Rivals ICP-OES...**

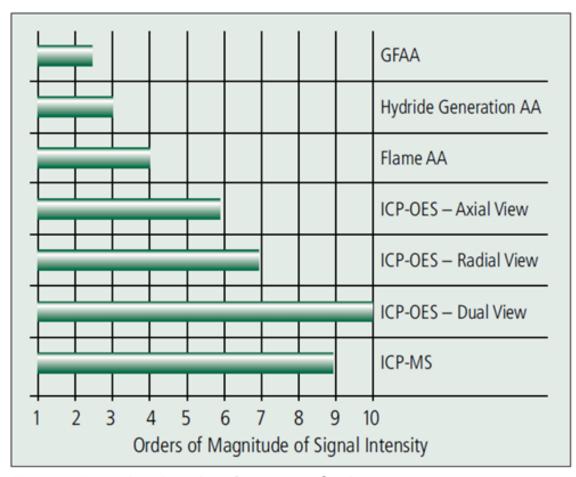
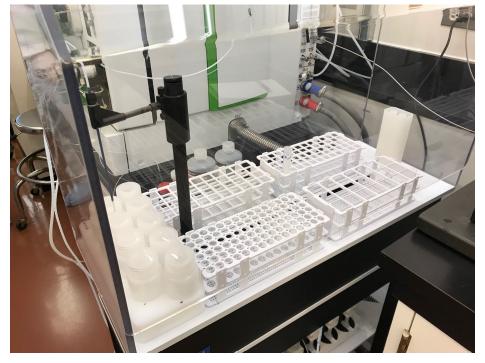



Figure 7. Typical analytical working ranges for the major atomic spectroscopy techniques.


NexION 2000 can use Extended Dynamic Range (EDR) Mode to extend linear working ranges for high concentration elements



# Nexlon 2000s in clean room of NCF







# **NexION 2000 Productivity Enhancements - PrepFAST**

- Automated Standards Preparation
  - Automatic dilution from 1-2 Stock Solutions
- Automated Dilutions
  - Up to 400-fold dilutions
  - Pre-determined or based on QC results
- Contamination Control
  - System made of inert PFA
  - Reduced contamination
  - Reduced carryover
- High Throughput
  - 2 load/injector valves

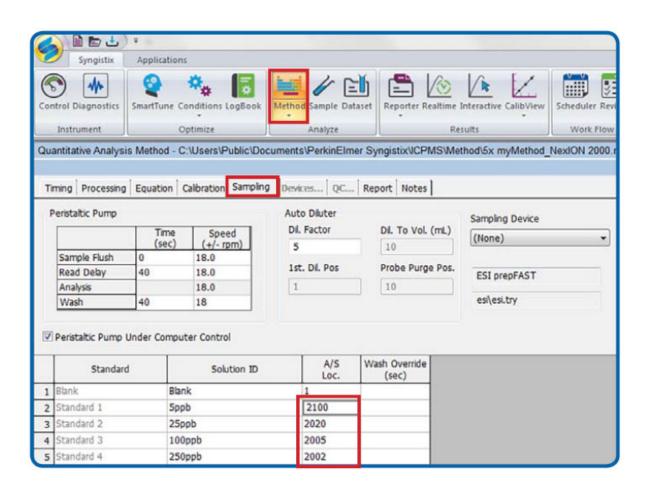




# **Save Time on Analysis**

### FAST is:

 Reliable, highthroughput, automated sample introduction system

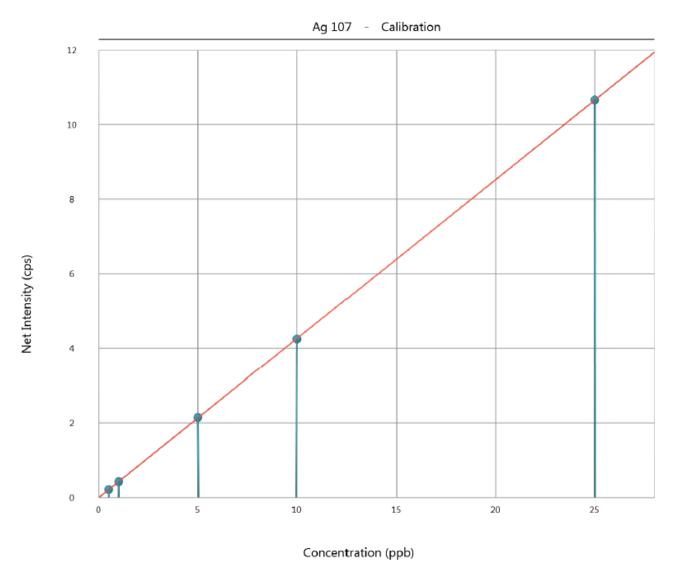

### Benefits of FAST:

- ~ 3 times faster than conventional autosampler systems.
- Handles even the most demanding high-matrix samples.



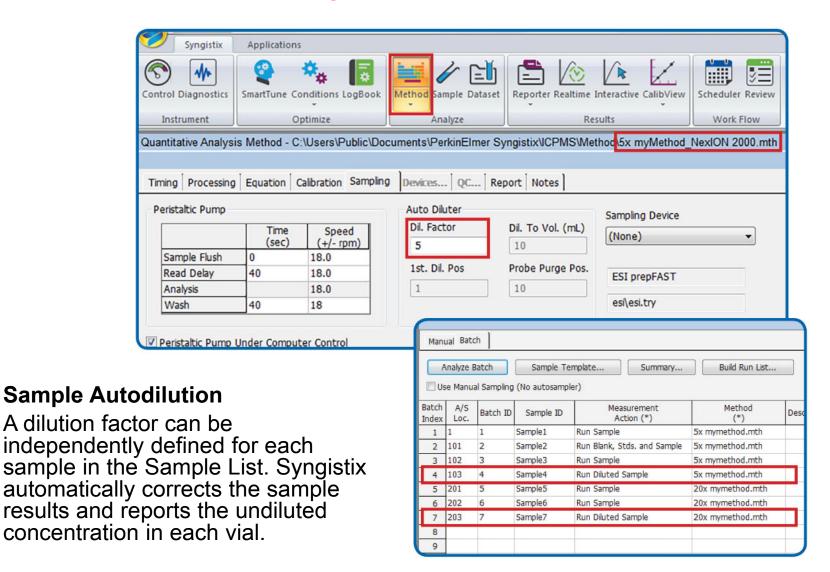
# **Save Time on Preparation**

## prep*FAST* for NexION 2000 Features



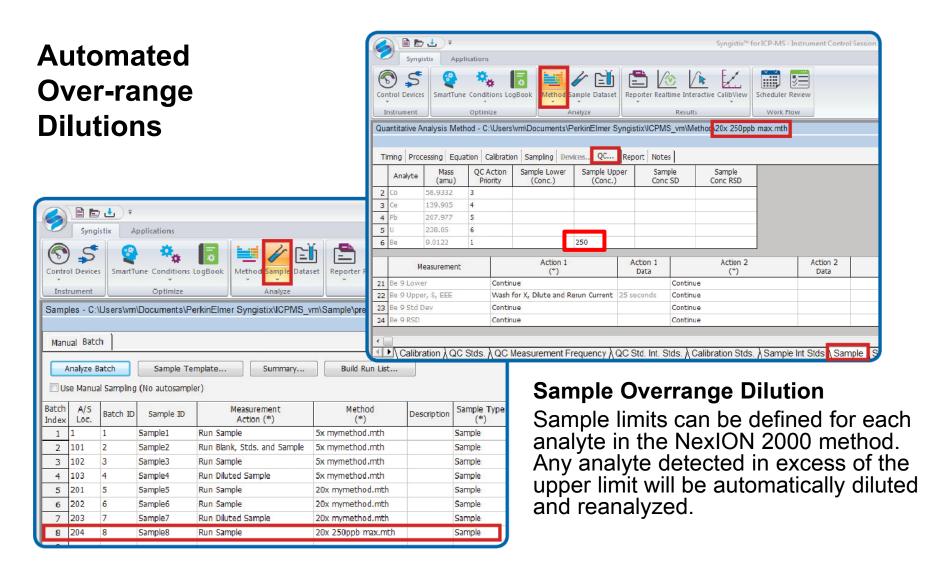

#### **Autocalibration**

Autocalibrate from one or more standards with ease by entering the location of the standard, dilution factor, and concentration of elements in the standard. Syngistix will automatically calculate the concentrations of elements for each calibration point.




# **Ag107 Autocalibration Curve From Stock Standard**






# **Save Time on Analysis**





# **Save Time on Analysis**







# **Assays on Nexlon 2000s**

# The Analysis of Drinking and Natural Waters using the NexION 2000 ICP-MS

- NexION® 2000 ICP-MS can analyze drinking and natural waters in Standard mode in accordance with U.S. EPA Method 200.8
  - Accuracy
  - Stability
  - Detection Limits
- Unique ability to selectively suppress high-level elements without affecting other masses

| Analyte    |      |
|------------|------|
| Aluminum   | (Al) |
| Antimony   | (Sb) |
| Arsenic    | (As) |
| Barium     | (Ba) |
| Beryllium  | (Be) |
| Cadmium    | (Cd) |
| Chromium   | (Cr) |
| Cobalt     | (Co) |
| Copper     | (Cu) |
| Lead       | (Pb) |
| Manganese  | (Mn) |
| Mercury    | (Hg) |
| Molybdenum | (Mo) |
| Nickel     | (Ni) |
| Selenium   | (Se) |
| Silver     | (Ag) |
| Thallium   | (Tl) |
| Thorium    | (Th) |
| Uranium    | (U)  |
| Vanadium   | (V)  |
| Zinc       | (Zn) |

# The Analysis of Soils and Waters in Accordance with U.S. EPA Method 6020B using the NexION 2000 ICP-MS

- NexION® 2000 ICP-MS can easily analyze waters and soils in accordance with U.S. EPA Method 6020B
  - Accuracy
  - Stability
  - Detection Limits
- SMARTintro™ High Throughput/High Matrix sample introduction module
  - Increases productivity without sacrificing performance

| Element   | Symbol | Element  | Symbol |
|-----------|--------|----------|--------|
| Aluminum  | Al     | Selenium | Se     |
| Antimony  | Sb     | Silver   | Ag     |
| Arsenic   | As     | Sodium   | Na     |
| Barium    | Ва     | Thallium | TI     |
| Beryllium | Ве     | Vanadium | V      |
| Magnesium | Mg     | Zinc     | Zn     |
| Manganese | Mn     |          |        |
| Mercury   | Hg     |          |        |
| Nickel    | Ni     |          |        |
| Potassium | K      |          |        |
| Cadmium   | Cd     |          |        |
| Calcium   | Ca     |          |        |
| Chromium  | Cr     |          |        |
| Cobalt    | Со     | 0.44     | OUET   |



# The NexION 2000: A Perfect Tool for the Determination of Trace Elements in Blood and Serum

- Accurate, stable analysis of blood and serum
- Unique RF generator allows matrixmatched or aqueous calibrations
- Four modes for optimal performance

| Element | Certified<br>(µg/L) | Measured<br>(µg/L) | Recovery | Measured<br>(µg/L) | Recovery |
|---------|---------------------|--------------------|----------|--------------------|----------|
| Cr      | 58.7                | 56.8               | 97%      | 53.5               | 91%      |
| Mn      | 92.0                | 84.9               | 93%      | 86.0               | 93%      |
| Se      | 579                 | 556                | 96%      | 550                | 95%      |
| As      | 90.3                | 80.1               | 92%      | 13.7               | 94%      |
| Cd      | 14.5                | 13.4               | 92%      | 13.7               | 94%      |
| Hg      | 51.1                | 51.8               | 101%     | 52.5               | 103%     |
| TI      | 47.8                | 44.7               | 94%      | 48.0               | 101%     |
| Pb      | 604                 | 605                | 100%     | 605                | 100%     |

| Sample<br>Type | Element | Mass | Analysis<br>Mode | Cell<br>Gas     |
|----------------|---------|------|------------------|-----------------|
|                | Cr      | 52   | Reaction         | NH₃             |
|                | Mn      | 55   | Reaction         | NH <sub>3</sub> |
|                | Se      | 78   | Reaction         | O <sub>2</sub>  |
| Blood          | AsO     | 91   | Reaction         | 0,              |
| BIOOU          | Cd      | 114  | Reaction         | O <sub>2</sub>  |
|                | Hg      | 202  | Reaction         | O <sub>2</sub>  |
|                | TI      | 205  | Standard         |                 |
|                | Pb      | 208  | Standard         |                 |
|                | Cr      | 52   | Reaction         | NH <sub>3</sub> |
|                | Cu      | 63   | Collision        | He              |
| Serum          | Zn      | 66   | Collision        | He              |
|                | Se      | 78   | Reaction         | O <sub>2</sub>  |
|                | Cd      | 114  | Reaction         | O <sub>2</sub>  |
|                | Hg      | 202  | Reaction         | 0,              |

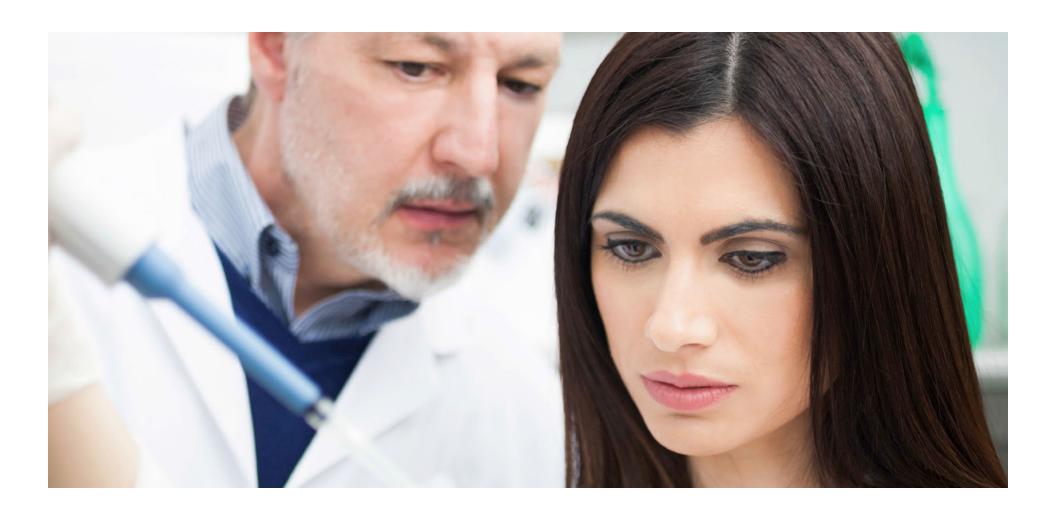


# The Analysis of Urine for Trace Elements using the NexION 2000 ICP-MS

- Accurate, stable analysis of urine
- Unique RF generator allows matrixmatched or aqueous calibrations
- Four modes for optimal performance

| Element | Certified (µg/L) | Experimental (µg/L) | % Recovery |
|---------|------------------|---------------------|------------|
| Cr      | 4.07             | 3.97                | 98         |
| Mn      | 3.91             | 3.88                | 99         |
| Со      | 2.03             | 1.94                | 96         |
| Ni      | 5.92             | 5.94                | 100        |
| Cu      | 36.7             | 36.7                | 100        |
| As      | 43.0             | 42.3                | 98         |
| Se      | 29.9             | 28.6                | 96         |
| Mo      | 23.9             | 23.0                | 96         |
| Cd      | 2.46             | 2.37                | 96         |
| Hg      | 2.30             | 2.62                | 114        |
| Sb      | 11.1             | 11.2                | 101        |
| TI      | 7.24             | 7.12                | 98         |
| Pb      | 24.0             | 22.5                | 94         |

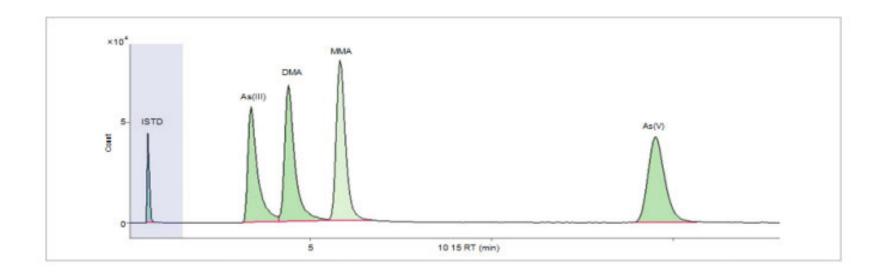
| Element | Mass | Analysis Mode | Cell Gas |
|---------|------|---------------|----------|
| Cr      | 52   | Reaction      | Ammonia  |
| Mn      | 55   | Reaction      | Ammonia  |
| Со      | 59   | Collision     | Helium   |
| Ni      | 60   | Collision     | Helium   |
| Cu      | 63   | Collision     | Helium   |
| AsO     | 91   | Reaction      | Oxygen   |
| Se      | 78   | Reaction      | Oxygen   |
| Мо      | 95   | Collision     | Helium   |
| Cd      | 111  | Reaction      | Oxygen   |
| Sb      | 121  | Standard      |          |
| Hg      | 202  | Reaction      | Oxygen   |
| TI      | 205  | Standard      |          |
| Pb      | 208  | Standard      |          |



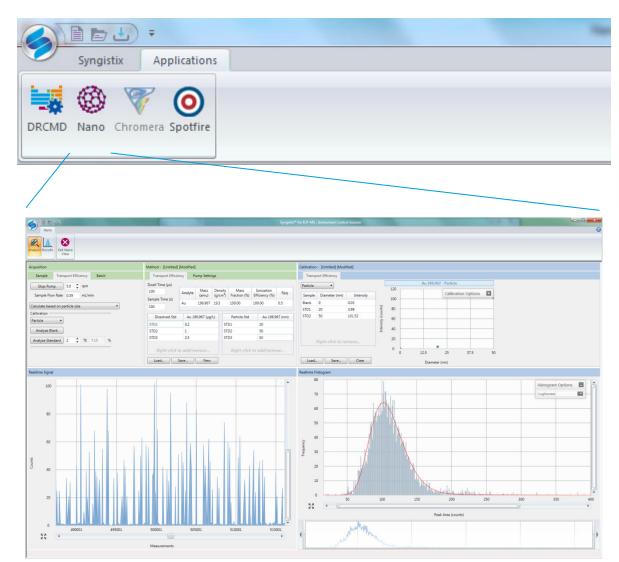

# Testing & Validation of Various Antacids for Class 1 & 2A Elemental Impurities in Pharmaceutical Products Following ICH Q3D & USP <232>/<233>

- NexION® 2000 ICP-MS can easily analyze some of the highest-matrix drug products in accordance with USP <232>
  - Accuracy
  - Repeatability
  - Ruggedness
  - System Suitability
- Instrument design considerations simplify analysis and maintenance
  - Universal Cell
  - Triple Cone Interface
  - Quadrupole Ion Deflector (QID)
  - All Matrix Solution (AMS)
  - SMARTintro™ High Throughput/High Matrix sample introduction system

| Element | Mass            | Universal<br>Cell Mode | Internal<br>Standard |
|---------|-----------------|------------------------|----------------------|
| Na      | 23              | Collision - Helium     | <sup>71</sup> Ga     |
| Mg      | 24              | Collision - Helium     | <sup>71</sup> Ga     |
| Al      | 27              | Collision - Helium     | <sup>71</sup> Ga     |
| Ca      | 43              | Collision - Helium     | <sup>71</sup> Ga     |
| ٧       | 51              | Collision - Helium     | <sup>71</sup> Ga     |
| Co      | 59              | Collision - Helium     | <sup>71</sup> Ga     |
| Ni      | 60              | Collision - Helium     | <sup>71</sup> Ga     |
| As      | 75              | Collision - Helium     | 72Ge                 |
| Cd      | 111             | Collision - Helium     | 115 In               |
| Hg      | 202             | Collision - Helium     | 159Tb                |
| Pb      | 206 + 207 + 208 | Collision - Helium     | 159Tb                |







# **Assays in Development**

# Arsenic Speciation Analysis (New Chromera is coming)

- Toxicity of elements depends on chemical form of the element
  - As inorganic (As+3/As+5)
  - As organic (MMA, DMA, AsB)
- Separate species using chromatography
  - HPLC or GC
- Detect element retention time identifies species



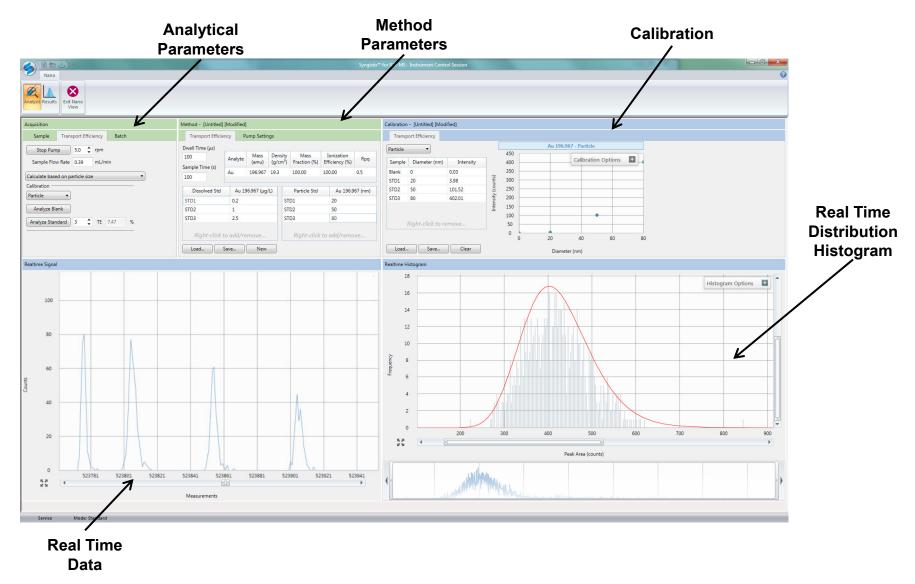
# **Nano Particle Analysis**







NexION™ Syngistix Nano Application Module




# Single Particle ICP-MS – What is it?

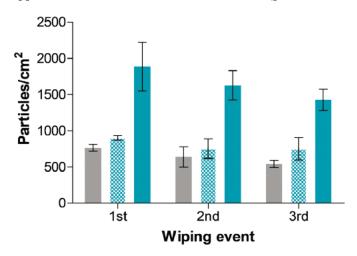
- A new advancement in ICP-MS applications allowing the measurement of individual inorganic nanoparticles
- A technique that allows the differentiation between ionic (M<sup>+</sup>) and particulate signal (nanoparticles) in a wide variety of matrices without any prior separation
- It is element specific, and provides composition, ionic and particle concentration, size and size distribution
- Allows the analysis of nanoparticles at low concentrations (as low as 50 part/mL)
- Measures the core size of nanoparticles
- Tracks nanoparticles dissolution and agglomeration



# **Syngistix Nano Application Module – Analysis Tab**






# **Transport of Nanoparticles Via Physical Contact**

# Antimicrobial coatings

| Product              | Description                    | Nanoparticle | Notes                                                          |
|----------------------|--------------------------------|--------------|----------------------------------------------------------------|
| Silicone<br>Keyboard | Antimicrobial<br>Properties    | Ag           | Advertised That<br>Contains Ag NPs<br>Antimicrobial Properties |
| Covers               | No Antimicrobial<br>Properties |              | Control; No Claim of<br>Antimicrobial Properties               |
| Wooden               | CuO-containing<br>Paint        | CuO          | Contains CuO NPs                                               |
| Blocks               | Paint Without<br>CuO           |              | Control; Certified Not<br>to Contain CuO NPs                   |



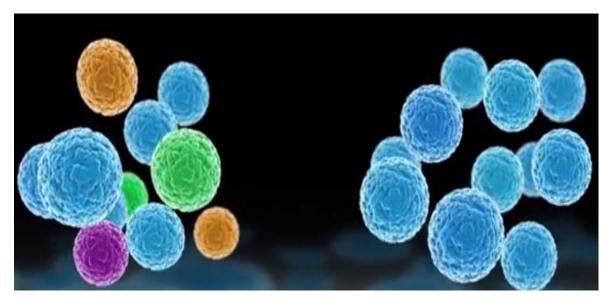
Ag NP transfer from keyboard covers



#### Transport of Nanoparticles From Coated Surfaces Through Physical Contact

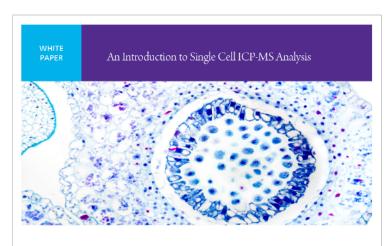
#### Introduction

With the growing use and incorporation of nanoparticles (NPs) into consumer products, concern about human exposure


to NPs has also increased, leading to the question: Are nanoparticles in consumer products transferred to humans? Since user interaction with these products occurs mostly via physical interaction, it is important to understand how NPs are transferred through physical contact.

This work explores the transfer of nanoparticles from nano-enabled surfaces to wipes, focusing on several characteristics of nanoparticle release: total mass concentration, particle number concentration, and particle size distribution. Because of their wide use due to antimicrobial properties, silver (Ag) NPs were examined, along with CuO NP transfer from painted surfaces. A more detailed description of this work is available\*, so only an overview will be given here.






# Single Cell ICP-MS: Metal content at the cellular level





# What is Single Cell ICP-MS?



#### Introduction

The introduction and development of Single Plantick ICP-MS (SPI-CP-MS) in opened a new area of research which allows the rapid detection and analysis of metal based particles in a vaccinety of martice and applications. "The key feature of SPI-CP-MS is that it allows discrete pulses of postorely charged ions to be detected and measured in a time resolved manner using microscored (µs) data equisition rates. This advance in data equisition capabilities is opening up a number of new application areas. In this white page, we will introduce the concept of Single Cell ICP-MS (SC-ICP-MS), where individual cells are rapidly analyzed for metal content. Before detaining into SC-ICP-MS is therefore years the theory of SINCI-MS.

#### SP-ICP-MS: A Brief Review

Comprehensive descriptions of SPHCP-MS are available, <sup>44</sup> so only a brief review will be given here. When a nanoparticle enters the plasma, it is completely ionized, producing a burst of ions which can be detected with ICP-MS. While conventional ICP-MS looks at a communous signal, the output from SP-CP-MS looks at discrete signals: one nanoparticle yields one ion burst, with the intensity of the resulting signal being related to the size of a particle (mm) and the number of pulses being related to the particle concentration (partirin).

The key to SP-ICP-MS is rapid, continuous measurement, which minimizes the chance of more than one particle being detected at the same time and ensures that particles are all counted. These tasks can be accomplished with ICP-MS instrumentation which postants feat electronics and eliminates the outgrouppel.

#### Authors:

Lauren Amable<sup>1</sup> Chady Stephan<sup>2</sup> Stan Smith<sup>2</sup> Ruth Mentifield<sup>3</sup>

'National Institute on Minority Health and Health Disparities, National Institute of Health, Bethesda, MD USA

<sup>3</sup>PerkinElmer Inc., Shelton, CT USA

<sup>3</sup> Center for Environmental NanoScience and Risk (CENR), Arnold School of Public Health, University of South Carolina, SC USA

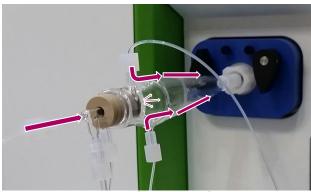


# Single Cell - ICP-MS is an emerging technology allowing users to:

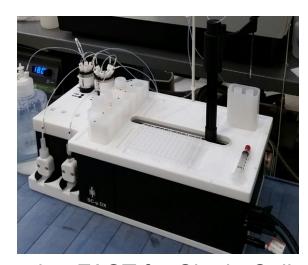
- Differentiate between ionic metal concentration in culture media and in individual cells without any sample preparation
- Monitor metal and nanoparticles content within single cells
  - Intrinsic metal content
  - Uptake of metals within a cell
  - Uptake of nanoparticles
  - Number of nanoparticles within a cell
- Handle low cell numbers compared to conventional methods



# **Single Cell ICP-MS**


- Nebulization of cells
- Transport of cells into the plasma

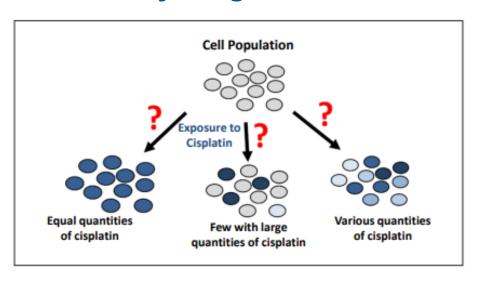


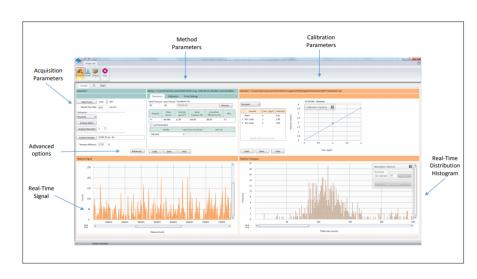

 Software and data treatment



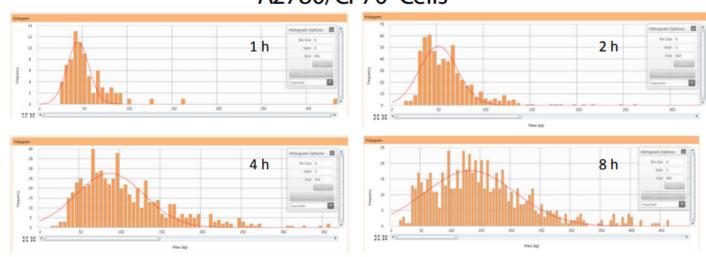
**Application Software** 




Asperon™ Spray Chamber



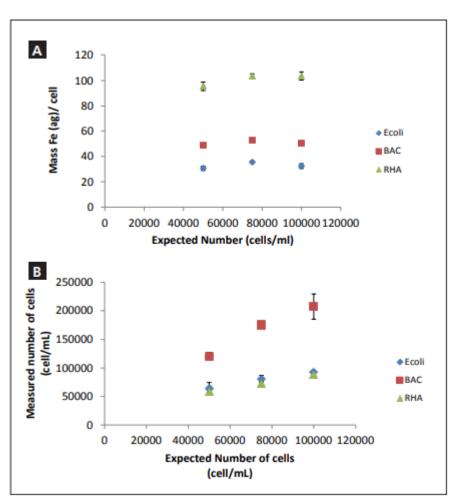

microFAST for Single Cell




# New Research Evaluating Cisplatin Uptake in Ovarian Cancer Cells by Single Cell ICP-MS






### A2780/CP70 Cells





# Iron Content Measurement in Individual Bacterial Cells Using Single Cell ICP-MS

- Intrinsic/nutrient metals: Single Cell ICP-MS is an essential tool for quantifying nutrient metals
- Iron mass per cell: SC-ICP-MS
   allows for the quantification of the
   relationship between the size of the
   cell and the Fe concentration
- Stress conditions: SC-ICP-MS
   enables monitoring the change in
   intrinsic/nutrient metal per cell,
   which can change due to cell stress
   conditions





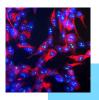
# **Benefits of Single Cell**



1

Metal-based drugs

- Drug discovery and development
- Drug delivery
- Center For Disease Control And Prevention




**Environmental Toxicology** 

2

 Environmental and Marine Science centers

- Institute of Plant Physiology and Ecology
- Center for Eco-Environmental Sciences



science

cellular

Biotech and

3

Department of Molecular & Cellular Biology
Department of

Biological

Sciences

**CACHET** 

Cancer & Drug Research

# **Contact**

#### **Address**

835 S. Wolcott St, E12 (basement), MSB Chicago, IL 60612

### **Phone**

Office:312-996-7357

### E-mail

e-mail: MSC@uic.edu